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This work was motivated by recent experimental results on the spectra of fluctuating 
temperature gradients in a heated turbulent boundary layer obtained by Sreenivasan, 
Danh & Antcjnia. Standard techniques of turbulence theory are used herein to derive 
expressions relating the individual one-dimensional spectra of each of the three com- 
ponents of the spatial gradient aO/8xi in a locally isotropic turbulent scalar field. The 
results of the isotropic theory explain all of the new observed features of the tem- 
perature-gradient spectra. The spectra of aO/ay and aO/az decrease monotonically 
with increasing wavenumber, in contrast to the well-known behaviour of the spectrum 
of aO/ax) which reaches a maximum value at roughly one-tenth the Kolmogorov 
wavenumber. The spectra of aO/ay and 88/& are relatively rich in low frequency 
energy and relatively poor in high frequency energy compared with the spectrum of 
aO/ax. The absolute magnitudes of the spectra of H/ay and N / a z  calculated from the 
spect,rum of aO/ax using the isotropic relations are in generally good agreement with 
the corresponding measured spectra for a large range of wavenumbers, indicating 
second-order spectral local isotropy of the fine-scale scalar structure for sufficiently 
large wavenumbers. The form of the spectra of aO/ay and aO/az in the inertial subrange 
is derived analytically. 

1. Introduction 
The Kolmogorov (1911 a, b )  hypothesis of local isotropy that spectral properties of 

turbulence should obey isotropic relations for sufficiently large wavenumbers is one of 
the cornerstones of t,urbulence theory. For the fluctuating velocity field, local tests of 
isotropy are usually applied to second-order spectral quantities, e.g. through the 
isotropic relation between spectra of longitudinal and lateral components of velocity 
fluctuations. Some tests have also been based on third-order spectral quantities, e.g. 
those used by Van Atta & Chen (1969) and by HelIand (1974). Second-order spectral 
tests for local isotropy of turbulent scalar fields have not been considered in previous 
work, apparently because of a lack of appropriate measurements that would have 
stimulated formulation of the simple theory required. An appropriate stimulus is the 
recent data of Sreenivasan, Danh & Antonia ( I  9761, which produced several interesting 
new results whose interpretation was not clear in the absence of any theoretical 
guidance. The present paper describes an attempt to understand these results. 

Sreenivasan et al. (1976) made simultaneous measurements of all three spatial 
derivatives of the fluctuating temperature 0 in a heated turbulent boundary layer. 
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Their spectral measurements show that the spectrum of %)/ax contains significantly 
more high frequency energy and less low frequency energy than the spectra of aelay 
and ae/az. Believing this behaviour to be a t  variance with expectations based on local 
isotropy, they suggested that it was probably a result of the moderate Reynolds 
number of their flow. In  the present work theoretical relations between the spectra 
of aO/ax, aO/ay and aO/az are derived for isotropic turbulence and their consequences 
are compared with the measurements. The predicted form of the one-dimensional 
spectra of ae/ay and a@/& is found to be distinctly different from that of M/ax for all 
Reynolds numbers. The theoretical results correctly predict the shape and magnitude 
of the spectra of aslay and 36/82, and explain the observed amplitudes relative to the 
spectrum of 88/& a t  low and high frequencies. The results quantitatively show that 
for sufficiently large wavenumbers the temperature field is in fact nearly locally 
isotropic with respect to second-order spectral quantities. 

2. Theory 

(e.g. Batchelor 1953, pp. 31 and 184) 
Let the three-dimensional scalar field be represented by a Fourier-Stieltjes integral 

e(x) = J J J e w z , ( k )  (1) 

so that ax, = i / / j k , e i k . x d Z , ( k ) ,  i = 1,2,3. (2) 

Then the correlation function of a8/axi is 

where @ ( k )  = @ ( k )  is the spectral density field in three dimensions of the isotropic 
scalar field 8, and repeated indices are not summed. Taking r along the mean flow 
direction xl, we have 

(a8(x+r)%)) axi 
axi = /omexp(iklr) [2JJrn - m  k : @ ( k ) d k , d k j ]  dk,, i = 1,2,3. (4) 

The expression in square brackets gives the (measurable) one-dimensional spectrum 
of a6/axi, i.e. 

$ O z ( k l )  = Jl 2k: @ ( l C )  dk2dk3  

$e,(kl) = qhe,(k,) = / / ( k ; + k i ) @ ( k ) d k , d k ,  = ss (k2-kIC2,)@(k)dk2dk3. 

$Bli(kl) = A9@l) = * [ / k = k i  k F ( k ) d k - k B , / "  k = k i  k - l R ( k ) d k ] .  

( 5 )  
- m  

and similarly for a8/ay and ae/az. For isotropy 

(6) 

Defining the usual three-dimensional spectrum averaged over spherical shells 

F ( k )  = h k 2 @  

and performing the integrations over k,  and k,  with k,  fixed, k2 = k2, + k; + ki = k; + a2 
and crdu = k d k ,  we have 

m 

(7) 
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Similarly, from ( 5 )  we recover the familiar relation 

where F ( k )  = - ka$,/ak (9) 

as given, for example, in Hinze (1975, p. 285). 
In terms of the one-dimensional spectra (7) becomes 

or $e,(ki) = -hi  a$oJaki. (11) 

Since q5By(kl) is the integral of k$,(k) from k,  to co, it must be a monotonically 
decreasing function of k,, in sharp contrast to the spectrum of $ex, which increases 
with k, for small k, (like kf in the inertial-convective subrange) and then decreases 
for large k,. Since QSoz(k) < $$(k) = $e,(k) for small k and 

joa $ex(k) dk = IOm $ey(k) dk, 

and $ey must cross over at some value of k, and we must have $ev(k) < $ez(k) for 
large k. In 3 3 we shall see that this relative behaviour is observed in the experiments. 

This behaviour is qualitatively similar to the relation between the one-dimensional 
spectra of the transverse and longitudinal velocity components, $Jk,) = $w(kl)  and 
$u(kl) respectively, in incompressible locally isotropic turbulence. For this case (see, 
for example, Batchelor 1953, p. 50) 

$v(kl) = 3$,(k,) - Bkl d$,(kl)/dkl* (12) 

The corresponding differences between the spectral transformations from one to 
three dimensions for the velocity vector u and scalar-gradient vector VB = aB/ax are 
due to the fact that 

v.u = 0 (13) 

whereas v x v e = o .  (14) 

k i d Z i ( k )  = 0, kik idZo(k)  = k2dZo(k) ,  (151, (16) 

The spectral equivalents of (1  3) and (14) imply, respectively, that 

i.e. the Fourier coefficient vector of the incompressible velocity field is perpendicular 
to the wavenumber vector (Batchelor 1953, p. 32), whereas the Fourier coefficient 
vector of the scalar-gradient field is parallel to the wavenumber vector. It is interesting 
to note that for a random isotropic sound field, for which V x u = 0 but V .u + 0, 
we have (e.g. Panchev 1971, p. 117) 

$JkJ = j k-l$&) dk 
ki 

and {he spectral relations are formally the same as those for the components of VB. 
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The form of #ey and #oz in the inertial-convective subrange can be derived from 
(1 1). In the inertial-convective subrange 

#e,(ki) = P(€>-+ 01) kf,  (17) 

where (e) and (x) are the mean rates of dissipation of kinetic energy and scalar 
variance, respectively, and /3 is a constant. So from (1 1)  we have 

where i1 is the low wavenumber limit of the inertial-convective subrange. 

law behaviour it would be most useful to work with the quantity 
Equation ( 1  9) implies that to examine experimental data for $ey and #@, for power- 

as a log-log plot of this quantity versus k, would then have a slope of +* in the 
inertial-convective subrange. 

3. Comparison with experiments 
Sreenivasan et al. (1976) made simultaneous measurements of all three components 

of the fluctuating temperature gradient in the inner region of a fully developed 

FIGURE 1.  Normalized spectra of aO/az and aO/ax. Four-wire probe data of Sreenivasen et al.: 
0, $e,(kf); 0, $ez(@); -, $~ , (k f )  computed from measured $B,(kf) using the isotropic relation 
(10). 
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FIQURE 2. Normalized spectrum of ae/ay. Two-wire probe data of Sraenivasan et al. for $e,(rC,*): 
0, Ay = 5.257,; A, A y  = 4 . 1 ~ ~ ;  0, A y  = 3qe. Here v8 is the Corrsin-Oboukhov scale, equal to 
1.287, where 7 = V * / ( B ) ~  is the Kolmogorov scale. -, $e,(kr) computed from measured $e,(k:) 
using the isotropic relation (10). 

turbulent boundary layer over a heated flat plate at a moderate Reynolds number. 
In their notation, the x co-ordinate designates the streamwise direction, the y co- 
ordinate is normal to the plate and the z co-ordinate designates the spanwise direction. 
I'heir cold-wire measurements were made with a four-wire probe consisting of two 
parallel vertical wires measuring ae/az 2 A6/Az mounted a small distance upstream 
of two parallel horizontal wires measuring a6/ay 2 AB/Ay. The streamwise derivative 
ae/ax was obtained from the time derivative of 0 using Taylor's frozen-turbulence 
hypothesis. The separation of the vertical wires measuring M/az  was 1.2 mm, while 
the separation of the horizontal wires measuring M/ay was 0.9 mm. Measurements 
with a two-wire probe with various separations were also made. 

The experimental data for $ez, $By and $ez, obtained a t  a height above the plate 
equal to 0.126 times the velocity boundary-layer thickness with a free-stream velocity 
U of about 9 m/s, are shown in figures 1 and 2. For these data, the turbulence Reynolds 
number R, = u'h/v M 150, where u' is the r.m.8. longitudinalvelocity fluctuation, h the 
Taylor microscale and v the kinematic viscosity. There is no evidence of an inertial- 
convective subrange in $ez, as expected for such a small R,, and useful comparison 
with (19) cannot be made because both /? and f ,  are not known. Also shown in figures 
1 and 2 are the local-isotropy predictions for the spectra $ey and $8z made using the 
measured $ez by performing the integration of k-1$8, in (10) for the full range of 
values of k,. The measured spectra $ey and $ez decrease monotonically with increasing 
k as predfcted by (10) for locally isotropic turbulence. As seen from figure 1,  there is 
excellent agreement between the measured $e, and that calculated from the isotropic 
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relation for all dimensionless wavenumbers kf = 2nfy/U greater than about 5.0, 
indicating second-order local isotropy for these wavenumbers. The wavenumber 
k: = 5.0 corresponds to a wavenumber kl/kd = 0.06, where kd = ((e)/v3)* is the 
Kolmogorov dissipation wavenumber and v is the kinematic viscosity. For kf < 5.0, 
the values of &z computed from the isotropic relation lie below the measured values. 
The difference increases with decreasing wavenumber, consistent with the fact that 
( (aO/az)z) > ( ( a O / a ~ ) ~ )  for these data, while the isotropic relations employed in the 
theory enforce equality of the mean squares of all three components of the gradient. 
As shown in figure 2, the isotropic relation correctly predicts the shape of the q5ey 
spectrum, but the absolute agreement is not as close as it is for q&,,. The fact that the 
computed spectrum is higher than the measured one for large k, may be associated 
with the finite separation of the wires measuring aO/ay, as the data in figure 2 show 
that #ey is strongly attenuated with increasing Ay for this range of k:. However, for 
smaller k:, the computed curve also looks a little high, although the closer agreement 
for these wavenumbers as compared with that for & is consistent with the overall 
intensities measured for these data, i.e. ( ( N / a z ) 2 )  > ((a19/ay)~) > ( ( M / ~ X ) ~ ) .  The 
isotropic theory correctly predicts that &, is richer in high frequency energy and 
poorer in low frequency energy than q5ey and #@, as observed directly from analog 
traces and from the spectra of Sreenivasan et al. 

In conclusion, the good agreement between the local-isotropy theory and available 
measurements directly demonstrates for the first time that the fine-scale structure of 
turbulent scalar fields can be locally isotropic with respect to one-dimensional second- 
order spectra of different components of the gradient vector. In view of these results, 
it appears likely that scalar fluctuations in other laboratory flows and in high Reynolds 
number atmospheric boundary-layer turbulence and other geophysical flows will also 
be found to be locally isotropic with respect to the present criteria. For example, one 
would expect to find a large range of spectral local isotropy for temperature gradients 
in the heated wake flow studied by Freymuth & Uberoi (1971), for which they found 
near equality of ( ( a O / a ~ ) ~ ) ,  ((80/ay)2) and ( ( a O / a ~ ) ~ ) .  Hopefully, measurements of &y 

and &z in geophysical flows with large Reynolds numbers will also be made in the 
future. 

I wish to thank Prof. R. A. Antonia for generously making the data of Sreenivasan 
et al. (1976) available to me, and Prof. S. Corrsin and a reviewer for pointing out the 
similarity with spectral relations for a random isotropic sound field. The work was 
supported by ONR Contract NOOO14-76-(3-0702 and by National Science Foundation 
Grant ENG76-13147 A01. 
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